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Abstract—High-quality and large-scale repositories of real bugs
and their concise patches collected from real-world applications
are critical for research in the software engineering community.
In such a repository, each real bug is explicitly associated with
its fix. Therefore, on one side, the real bugs and their fixes
may inspire novel approaches for finding, locating, and repairing
software bugs; on the other side, the real bugs and their fixes
are indispensable for rigorous and meaningful evaluation of
approaches for software testing, fault localization, and program
repair. To this end, a number of such repositories, e.g., Defects4J,
have been proposed. However, such repositories are rather small
because their construction involves expensive human interven-
tion. Although bug-fixing code commits as well as associated test
cases could be retrieved from version control systems automat-
ically, existing approaches could not yet automatically extract
concise bug-fixing patches from bug-fixing commits because such
commits often involve bug-irrelevant changes. In this paper, we
propose an automatic approach, called BugBuilder, to extracting
complete and concise bug-fixing patches from human-written
patches in version control systems. It excludes refactorings by
detecting refactorings involved in bug-fixing commits, and reap-
plying detected refactorings on the faulty version. It enumerates
all subsets of the remaining part and validates them on test
cases. If none of the subsets has the potential to be a complete
bug-fixing patch, the remaining part as a whole is taken as a
complete and concise bug-fixing patch. Evaluation results on 809
real bug-fixing commits in Defects4J suggest that BugBuilder
successfully generated complete and concise bug-fixing patches
for forty percent of the bug-fixing commits, and its precision
(99%) was even higher than human experts.

Index Terms—Defect, Bug, Testing, Patch, Repository, Dataset

I. INTRODUCTION

High-quality and large-scale repositories of real bugs and
their concise patches collected from real-world applications
are critical for research in the software engineering commu-
nity. On one side, such real bugs/patches are indispensable for
rigorous evaluation of numerous automatic or semi-automatic
approaches to identifying faulty software applications [1]–[4],
to locating faulty statements [5]–[9], and to repairing faulty ap-
plications [10]–[13]. Such approaches are expected to work on
real-world applications. Consequently, it is critical to evaluate
such approaches with a large number of real bugs/patches from
real-world applications before they could be widely applied in
the wild [14]. On the other side, real bugs and patches may also
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inspire novel ideas in finding, locating, and repairing software
bugs. For example, by analyzing real bugs, researchers could
identify what kind of statements are more error-prone and thus
try to repair such statements first during automatic program re-
pair [15]. Another typical example is the common fix patterns
learned from human-written patches [16]. Leveraging such
patterns significantly increased the performance of automatic
program repair [16]. Finally, data-driven and learning-based
approaches in automatic program repair [17]–[19] and bug
detection [20] usually depend on a large number of diverse
real bugs/patches.

Bug repositories have been proposed [14] to facilitate bug-
related research. The first category of bug repositories is con-
structed manually. Typical examples of this category include
SIR [21], BugBench [22], IntroClass [23], Codeflaws [24],
QuixBugs [25], DroixBench [26], and DBGBench [27]. These
repositories are constructed by hand, and thus are quite limited
in scale and diversity. The second category of bug repositories
is constructed automatically or semi-automatically. iBUGS
[28] and ManyBugs [23] are typical bug repositories con-
structed by automatically extracting bug-fixing commits as
patches. However, existing studies [14] suggest that bug-
fixing commits often contain both bug-fixing changes and bug
irrelevant changes, e.g., refactorings. As a result, it is risky
to take all of the changes in a bug-fixing code commit as
the patch of the associated bug report: The resulting patch
may contain code changes irrelevant to the bug. Code changes
are deemed as bug-irrelevant if they are changing/adding/re-
moving functionalities that are not associated with the bug
report or they are function-irrelevant common refactorings that
could be conducted independently before bug-fixing changes
are made. A bug-fixing patch extracted from a bug-fixing
commit is deemed as complete and concise if and only if the
patch is composed of all bug-relevant changes (complete) but
no bug-irrelevant changes are included (concise). To extract
complete and concise bug-fixing patches, Defects4J [14] takes
all changes in a bug-fixing commit as a patch, and then
manually excludes bug-irrelevant changes from the generated
patch. As a result, the resulting patches in Defects4J are highly
accurate, often both complete and concise, but the scale and
diversity of the patches remain limited. Notably, applying the
bug-irrelevant changes to the original buggy version (called
Vn−1) results in a new version called Vbug [14], and applying
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the concise patch in Defects4J to Vbug fixes the bug and results
in the fixed version (called Vn).

Although bug-fixing commits could be identified automati-
cally by comparing bug IDs in bug tracking systems and code
commit messages in version control systems [29], it remains
challenging to extract automatically bug-fixing changes (i.e.,
patches) from bug-fixing commits. To fully automate the
construction of bug-patch repositories, in this paper, we pro-
pose an automatic approach, called BugBuilder, to extracting
concise bug-fixing patches from human-written patches in
version control systems. It first leverages refactoring mining
and reapplication to remove refactorings from human-written
patches. It validates whether the remaining part is a complete
and concise bug-fixing patch by enumerating all subsets of the
remaining part and validating them on test cases. If none of the
subsets can be a complete patch, the remaining part as a whole
is deemed as a complete and concise patch. Consequently,
if the human-written patch is composed of both refactorings
and bug-fixing changes, BugBuilder splits it into two ordered
patches: a refactoring patch and a following bug-fixing patch.
It is highly similar to Defects4J, which splits an existing patch
into a bug-irrelevant patch and a following bug-fixing patch.
Notably, directly applying the bug-fixing patch to the original
buggy version would not work. Consequently, to evaluate
automated program repair tools/algorithms (called APR tools
for short) with the extracted bug-fixing patches, we should
first apply the refactoring patch to the original buggy version
(called Vn−1), take the resulting version (called V ′n−1) as the
buggy program to be fixed, generate patches for V ′n−1 with
the APR tools, and compare the generated patches against
the bug-fixing patch extracted by BugBuilder. Besides APR
tools, fault localization tools/algorithms may also leverage the
patches extracted by BugBuilder for quantitative evaluation
(taking V ′n−1 as the buggy program to be fixed).

BugBuilder has been evaluated on 809 real bug-fixing
commits collected by Defects4J. On each of the evaluated
commits, we leveraged BugBuilder to extract concise patches
automatically. If a patch was successfully generated, we
compared it against the manually constructed patch provided
by Defects4J. On the 809 bug-fixing commits, BugBuilder
automatically generates 324 patches where 308 were identical
to manually constructed patches in Defects4J. For the other 16
patches that are different from manually constructed patches,
we manually analyzed the associated bug reports as well as
the code commits. Evaluation results suggest that out of the 16
pairs of mismatched patches, 12 were caused by incomplete
patches in Defects4J whereas the generated patches were
complete and concise. Only four out of the 324 generated
patches were inaccurate (complete but not concise), and all of
them are caused by incomplete detection of refactorings.

The paper makes the following contributions:
• First, we propose an automatic approach to extracting com-

plete and concise bug-fixing patches from human-written
patches in version control systems. To the best of our
knowledge, it is the first fully automatic approach for this
purpose. The approach makes it practical to automatically

build large-scale high-quality bug-patch repositories, which
may significantly facilitate future bug-related research, es-
pecially automated program repair and fault localization.

• Second, we evaluate the proposed approach on real bug-
fixing code commits. It successfully extracted complete
and concise bug-fixing patches for 40% of the bug-fixing
commits with a high precision of 99%. The replication pack-
age, including the source code of BugBuilder, is publicly
available at [30].

II. RELATED WORK

Because of the importance of real bugs/patches, a number of
bug repositories have been proposed. To the best of our knowl-
edge, the software-artifact infrastructure repository (SIR) [21]
is the first attempt to provide a database of bugs. It consists
of 17 C programs and 7 Java programs. Each of the programs
has several different versions together with a set of known
bugs and test suites. However, most of the programs are very
small, and the bugs mostly are hand-seeded or obtained from
mutation [31]. Spacco et al. [32] collected real bugs made
by students during programming tasks. Their bug repository
contains hundreds of faulty projects accompanied with test
cases. However, most of the collected student projects are
small, and they could be significantly different from real-world
software applications in industry. IntroClass [23] proposed
by Le et al., Codeflaws [24] proposed by Tan et al., and
QuixBugs [25] proposed by Lin et al. contain real bugs
from programming competitions/challenges. However, such
bugs made in programming assignments or competitions could
be significantly different from real bugs in industry. To this
end, Lu et al. [22] manually collected 19 real bugs from 17
programs. Besides that, Tan et al. [26] manually collected 24
reproducible crashes from 15 open-source Android Apps, and
Böhme et al. [27] requested twelve experts to collect 27 real
bugs from open-source C projects. BugsJS [33] is composed
of 453 real manually validated JavaScript bugs from JavaScript
server-side programs.

Manual collection of real bugs is tedious and time-
consuming. Consequently, automatic and semi-automatic ap-
proaches have been proposed to collect real bugs. iBUGS
[28] is a semi-automatic approach to collecting real bugs. It
extracts 369 bugs from version control systems automatically,
assuming that all changes in the bug-fixing commits are bug-
related. However, an existing study [14] suggests that the
assumption is not always true, and bug-fixing commits often
contain bug-irrelevant changes like refactorings and imple-
mentation of new features. Consequently, taking all changes
in bug-fixing commits may result in unconcise patches that
contain both bug-fixing changes and bug-irrelevant changes.
Similar to iBUGS, ManyBugs [23] also takes the whole bug-
fixing commit as a patch and does not exclude irrelevant
changes within the commit. To exclude such bug-irrelevant
changes, Defects4J [14] relies on manual isolation of bug-
fixing changes from bug-irrelevant changes. As a result of the
manual isolation, bugs and patches in Defects4J are highly
accurate. Consequently, Defects4J becomes one of the most
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frequently used bug repositories in the community. Another
significant advantage of Defects4J is that it also provides
an extensible framework to enable reproducible studies in
software testing research. However, the manual intervention
requested by Defects4J prevents it from being fully automatic,
and thus the dataset remains limited in scale and diversity.
Bugs.jar [29] is another large bug repository, containing 1,158
real bugs and patches collected from open-source applications
(Apache@GitHub). Similar to Defects4J, it locates bug-fixing
commits by comparing the ID of bug-fixing issues in Jira
(a popular issue tracking system) and commit messages in
GitHub (source code version control system). It differs from
Defects4J in that it requests experts to manually verify that
the involved bug reports are real bugs, i.e., they are not
misclassified as bugs in the Jira repository.

BEARS proposed by Madeiral et al. [34] collects bugs based
on Continuous Integration (CI) instead of source code version
control systems. The core step of its bug collection is the
execution of the test suite of the program on two consecutive
versions. If a test failure is found in the faulty version and no
test failure is found in its patched version, BEARS takes the
two versions as the faulty and the fixed versions whereas their
difference is taken as the associated patch. However, BEARS
does not distinguish bug-fixing changes from bug-irrelevant
changes within the same source code commit. Similar to
BEARS, BugSwarm [35] also collects bugs/patches from CI
and fails to exclude bug-irrelevant changes from the collected
patches as well.

We conclude based on the preceding analysis that existing
bug repositories are limited in either scale or quality. Manually
or semi-automatically constructed repositories are limited in
scale because they request expensive human intervention. In
contrast, automatically constructed ones are limited in quality
because the automatically extracted patches often contains
bug-irrelevant changes. To this end, in this paper, we propose
a fully automatic approach to extracting high-quality patches
that are both complete and concise.

DiffCat proposed by Kawrykow and Robillard [36] iden-
tifies non-essential changes (especially refactorings) in ver-
sion histories, highly similar to RefactoringMiner [37] that
our approach leverages to identify refactorings. However, at
best it may serve as only the first step for concise patch
generation (see Fig 2 for more details). Simply recommending
refactoring-excluded patches (output of DiffCat) would result
in numerous unconcise patches when commits contain non-
refactoring bug-irrelevant changes. As a result, developers
need to manually check/clean all of the recommended patches
to guarantee the quality. Thung et al. [38] identify root causes
of bugs, i.e., lines of code in the buggy version that is respon-
sible for the bug. Such root causes are essentially different
from concise patches. Consequently, these approaches [36],
[38] do not address the same issue (automatically constructing
bug-patch repositories) as we do. Notably, neither of them
leverages off-the-shelf refactoring mining tools and neither of
them reapplies discovered refactorings as we do.

Fig. 1. A Bug-Fixing Commit from Google Closure Compiler

III. MOTIVATING EXAMPLE

In this section, we illustrate the challenges in the automatic
extraction of concise patches from bug-fixing commits. An
example is presented in Fig. 1, where the changes involved
in the commit are highlighted in standard diff style. Lines
beginning with ‘-’ are removed by the commit whereas lines
beginning with ‘+’ are inserted by the commit. Other lines are
untouched. This bug-fixing source code commit comes from
Google Closure Compiler [39], and the associated bug report
is publicly available online [40].

The modified method canInline (Line 1) checks whether the
provided reference and declaration can be safely inlined. The
bug report [40] complains that Singleton getters are inlined
although such methods should not be inlined. To fix this bug,
developers inserted an if statement (Lines 11-13) that declares
Singleton getters could not be inlined (i.e., forcing the method
to return false). Such changes constitute the bug’s complete
and concise patch [14] in Defects4J.

However, we also notice that the bug-fixing commit made
more changes than the insertion of an if statement (i.e., the
complete and concise patch for the bug). Changes on Lines
6, 8, and 9 are bug-irrelevant. Such changes are in fact a
typical extract variable refactoring. Consequently, extracting
all changes in the bug-fixing commit as the patch would result
in unconcise patch that contains bug-irrelevant changes.

BugBuilder successfully generates the complete and concise
patch from the bug-fixing commit as follows. First, it identifies
the extract variable refactoring by analyzing the changes made
in the commit. Second, it reapplies the identified refactoring to
the faulty version, which results in a new version V ′n−1, called
refactoring-included version. Third it computes all changes
(noted as Chs) between V ′n−1 and the fixed version (Vn).
Notably, Chs does not include the extract variable refactoring
because the variable convention (Line 6) is defined in both
V ′n−1 and Vn. Chs is composed of the changes on Lines
11-13 only. Fourth, BugBuilder enumerates and validates all
possible subsets of Chs. However, applying any proper subset
of Chs to V ′n−1 results in compiler errors or fails to pass
any new test cases in the fixed version. Consequently, such
proper subsets could not be taken as candidate patches. Finally,
BugBuilder applies all of the changes together (i.e., Chs) to
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Fig. 2. Overview of BugBuilder

V ′n−1, resulting in a compilable version that passes all test
cases associated with the faulty version or the fixed version.
Consequently, all of the changes together make up the only
candidate patch, and thus BugBuilder outputs it as the patch
for the associated bug.

IV. APPROACH

A. Overview

An overview of the proposed approach is presented in
Fig. 2. It takes as input two consecutive versions of a software
application, i.e., Vn−1 and Vn. The latter version Vn is called
Vfix or the fixed version in Defects4J [14], and Vn−1 is
called the faulty version. Notably, the two consecutive versions
are accompanied by their test cases, noted as Tn−1 and Tn,
respectively. Tn−1 and Tn exclude such test cases that fail on
their associated version of the application. The evolution from
Vn−1 to Vn is driven by a bug-fixing commit whose commit
message contains an ID of a validated bug report. With such
input, the proposed approach BugBuilder works as follows:
• First, it leverages RefactoringMiner [37] to discover refac-

torings that have been applied to Vn−1. RefactoringMiner is
a state-of-the-art approach to mining software refactorings
by comparing two consecutive versions of the same appli-
cation. It would result in a list of refactorings, noted as R.

• Second, if any refactorings have been discovered in the
preceding step, i.e., R is not empty, BugBuilder leverages
refactoring APIs to apply all of the discovered refactorings
to Vn−1. Applications of such refactorings on Vn−1 results
in a new version V ′n−1 that is different from both Vn−1

and Vn. For convenience, we call it the refactoring-included
version.

• Third, BugBuilder computes the difference between the
refactoring-included version (V ′n−1) and the fixed version
Vn. The difference is represented as a sequence of changes
(e.g., removing or inserting a token), noted as Chgs.

• Fourth, BugBuilder enumerates all possible subsequences of
Chgs, and validates whether the subsequence represents a
candidate patch. To validate a subsequence schg ⊆ Chgs,
BugBuilder applies all changes in schg to V ′n−1, which
results in a new version V ′′n−1. schg represents a candidate
patch if and only if V ′′n−1 passes all test cases in Tn−1 and
passes some test cases in Tn that fail on Vn−1.

• Finally, if only a single candidate patch is generated by Bug-
Builder, BugBuilder outputs it as a patch for the associated
bug report. Otherwise, no patch would be outputted.
Notably, the patches generated by BugBuilder are intended

to be applied to V ′n−1 (refactoring-included version) instead
of Vn−1 (the original buggy version). Consequently, applying
such patches to the original buggy version may result in
compilation errors and may fail to fix the defects. Although
we may revise BugBuilder to generate patches that could
be directly applied to the original buggy version, we decide
to follow the widely used Defects4J whose patches are also
intended to be applied to V ′n−1 (called Vbug in Defects4J [14])
so that existing tools and algorithms could seamlessly switch
from Defects4J to ours.

B. Detecting and Reapplying Refactorings

The key to exclude refactorings from bug-fixing patches
is to discover refactorings involved in bug-fixing commits
and remove such refactorings before patches are generated.
A few automatic approaches [41]–[45] have been proposed
to discover refactorings from version control systems for
various reasons, e.g., to facilitate the evaluation of automatic
refactoring recommendation algorithms, empirical studies on
code evolution, and library API migration. However, to the
best of our knowledge, such approaches have not yet been
applied to automatic extraction of patches.

A brief introduction to automatic refactoring detection is
presented as follows to make the paper self-contained, and
more details are referred to related work [37], [46]. An
automatic refactoring detection algorithm takes as input two
consecutive versions (noted as Vn−1 and Vn, respectively)
of the same application, and matches elements (e.g., classes,
methods, and variables) across versions. Based on the matched
elements, the algorithm identifies which elements in the former
version (i,e., Vn−1) have been removed, which elements in the
latter version (i.e., Vn) have been added, and which elements
are kept untouched. The algorithm then defines a list of
rules to detect refactorings based on the removed, added, and
untouched elements. For example, if a method m in class C1

(of version Vn−1) matches a method m′ in class C2 (of version
Vn) and C1 does not match C2, the algorithm recognizes the
changes as a move method refactoring that moves method m
from class C1 to class C2. The performance of the algorithm
depends on the accuracy of the employed element matching
algorithm as well as the quality of the employed heuristic
rules. RefactoringMiner [37] is more accurate than the alter-
native algorithms because it leverages an AST-based statement
matching algorithm that does not require any user-defined
thresholds [46]. To this end, we leverage RefactoringMiner to
discover refactorings in bug-fixing code commits (excluding
those on test cases).

Our approach excludes the discovered refactorings by reap-
plying such refactorings on the faulty version Vn−1, and
employs the resulting version (called V ′n−1) instead of the
original faulty version Vn−1 to generate patches. The rationale
is that we can divide the revision (bug-fixing commit) into two
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steps: (i) applying refactorings on Vn−1, which results in an
intermediate version V ′n−1; and (ii) fixing bugs and implement-
ing new features (if there is any) on V ′n−1. For convenience,
we call the intermediate version V ′n−1 refactoring-included
version. Notably, reapplication of the discovered refactorings
is accomplished by calling Eclipse refactoring APIs [47]. Such
APIs are widely used and well-established. For example, if a
bug-fixing commit contains a rename refactoring that changes
the name of method m from oldName to newName, we reapply
the refactoring as follows:

1 rename(m,newName);

2 public void rename (IJavaElement element, String newName){

3 ...

4 RenameJavaElementDescriptor descriptor =

5 createRenameDescriptor(element, newName);

6 RenameSupport renameSupport=RenameSupport.create(descriptor);

7 Shell shell=PlatformUI.getWorkbench().getActiveWorkbenchWindow()

.getShell();

8 renameSupport.perform(shell, PlatformUI.getWorkbench()

9 .getActiveWorkbenchWindow());

Invocations of Eclipse refactoring APIs are highlighted with
gray background in the code snippet. Notably, we have to
customize the code snippet for different categories of refac-
torings to forward refactoring information from Refactoring-
Miner to refactoring APIs because the required refactoring
information and refactoring APIs vary significantly among
different categories of refactorings. Currently, we have cus-
tomized the code snippet for eight most common refactorings,
including rename classes, rename methods, rename variables,
rename fields, rename parameters, rename packages, extract
methods, and extract variables. Such refactorings account for
72%=(284/397) of the refactorings discovered in the bug-
fixing commits in Defects4J.

C. Generating Potential Patches

For a given intermediate version V ′n−1 and the bug-fixing
version Vn, the proposed approach generates all possible
patches. To this end, it computes the difference between
V ′n−1 and Vn (excluding their differences in test cases). The
difference is represented as a sequence of token-level changes
(e.g., removing or inserting a token), noted as Chgs =<
chg1, chg2, . . . , chgk >. Each of the token-level changes is
composed of three parts: position, token, and edition type.
Edition type is either remove or insert.

The proposed approach enumerates all subsequences of
Chgs. Each subsequence schg ⊆ Chgs represents a potential
patch that makes all of the token-level changes in schg on
V ′n−1, and ignores other changes in Chgs. To reduce the
number of potential patches, we also introduce coarse-grained
changes: line-level changes. If a whole line of source code
has been removed from V ′n−1, we represent it as a line-
level change instead of a sequence of token-level changes.
Insertion of a new line of source code is handled in the same
way as a line-level change. Consequently, a potential patch is
finally represented as a sequence of token-level and/or line-
level changes.

D. Validating Potential Patches

The validation of a potential patch pt is conducted in two
phases. In the first phase, the proposed approach applies this
potential patch to the intermediate version V ′n−1, resulting in
a new version V ′′n−1. If V ′′n−1 could not compile successfully,
the potential patch is discarded as an illegal patch and its
validation terminates. In the second phase, V ′′n−1 is further
validated with test cases associated with the faulty version
(noted as Tn−1) and those associated with the fixed version
(noted as Tn) as follows:
• If any test case in Tn−1 fails on V ′′n−1, pt is not a valid

patch and its validation terminates;
• The proposed approach collects all test cases in Tn that fail

on Vn−1, and notes such test cases as potential triggering
test cases that may expose the associated bug;

• pt is a candidate patch if V ′′n−1 passes at least one potential
triggering test cases. Otherwise, pt is not a valid patch and
its validation terminates.
If and only if the proposed approach generates exactly a

single candidate patch from a bug-fixing code commit, the
approach recommends the candidate patch for the associated
bug report. Otherwise, no patch would be recommended.

V. EVALUATION

A. Research Questions

In this section, we evaluate the proposed approach by
investigating the following research questions:
• RQ1: How often do bug fixing commits contain bug-

irrelevant changes and what percentage of the changes in
bug-fixing commits are bug-irreverent?

• RQ2: Is BugBuilder accurate in extracting complete and
concise bugs/patches? What percentage of real bugs/patches
could be extracted accurately by BugBuilder?

• RQ3: To what extent does the refactoring detection and
replication affect the precision and recall of BugBuilder?

• RQ4: Is BugBuilder scalable?

B. Dataset

Our evaluation is based on the raw data in Defects4J.
Defects4J contains 835 real bugs collected from real-world
applications. For each bug, it provides the bug-fixing code
commit, the versions immediately following/preceding the
bug-fixing commit (called Vn and Vn−1, respectively), and
the manually confirmed patch for the bug. Vn and Vn−1 are
taken from version control history by Defects4J without any
modification. Vn−1 is different from the faulty version (Vbug)
provided by Defects4J because Vbug is manually constructed to
exclude refactorings and feature modifications whereas Vn−1

is an exact copy from the version control history.
Notably, only Vn and Vn−1 are leveraged as the input

of BugBuilder, whereas the manually constructed patches
provided by Defects4J are leveraged only to assess the per-
formance of BugBuilder, i.e., whether the automatically gen-
erated patches are identical to the manually constructed ones.
Defects4J contains 835 bug-fixing commits from 17 projects.
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However, we failed to retrieve the Vn−1 version for project
Chart because the version IDs for this project are invalid.
Consequently, this project was excluded from our evaluation.
As a result, the evaluation was conducted on 809 bug-fixing
commits from 16 projects.

Other bug-patch datasets, like iBUGS and ManyBugs, are
not leveraged for the evaluation because they do not exclude
bug-irrelevant changes from the final bug-fixing patches.

C. Experiment Design

1) RQ1: Prevalence of Bug-irrelevant Changes Within Bug-
fixing Commits:: As introduced in Section I, bug-irrelevant
changes within bug-fixing commits are preventing us from
accepting the whole code commits as patches. To investigate
how often bug-fixing commits contain bug-irrelevant changes,
we compared the manually constructed patches in Defects4J
against their associated code commits. The comparison was
conducted in two steps. First, we investigated how often the
patches are identical to their associated code commits:

Psame =
number of commits identical to associated patches

number of bug-fixing commits
(1)

Assuming that patches in Defects4J are complete and concise,
bug-fixing commits that are not identical to the associated
patches must contain bug-irrelevant changes. Consequently,
Pdiff = 1 − Psame is essentially the percentage of bug-fixing
commits that contain bug-irrelevant changes.

Second, we investigated what percentage of changes in bug-
fixing commits are bug-fixing changes and what percentage
of changes are bug-irrelevant changes. Because patches in
Defects4J have been manually constructed to exclude bug-
irrelevant changes [14], we took the size of the patches in
Defects4J as the size of bug-fixing changes in the associated
bug-fixing commits while the size of the commit is the size
of the whole patch in the version-control history.

2) RQ2: Performance of BugBuilder: To investigate the
performance of BugBuilder, we evaluated it on each of the
bug-fixing commits in Defects4J as follow:
• First, we retrieved its associated Vn and Vn−1 versions as

well as the manually constructed patch pt4j associated with
the bug-fixing commit;

• Second, we leveraged BugBuilder to generate patches, tak-
ing Vn−1 and Vn as input;

• Third, if BugBuilder resulted in a patch pt, we compared
it against the manually constructed patch pt4j to reveal
whether the automatically generated patch is identical to
the manually constructed one. In case they are identical,
we call the generated patch a matched patch. Notably, the
comparison between generated patches and the ground truth
is pure textual comparison of the patches, and it is fully
automatic.
An automatically generated patch is taken as a complete

and concise patch if and only if it is a matched patch, i.e.,
it is identical to the manually constructed patch (provided by
Defects4J) associated with the same bug-fixing commit.

TABLE I
BUG-FIXING AND BUG-IRRELEVANT CHANGES IN BUG-FIXING COMMITS

Project
Size of

Commits
(N1)

Size of
Bug-fixing

Changes (N2)
N2/N1

Commons CLI 473 325 69%
Closure Compiler 4,108 2,111 51%
Commons Codec 275 193 70%
Commons Collections 38 29 76%
Commons Compress 602 372 62%
Commons CSV 119 56 47%
Gson 239 168 70%
Jackson Core 485 307 63%
Jackson Databind 2,104 1,508 72%
Jackson Dataformat
XML

119 114 96%

Jsoup 1,163 777 67%
Commons JXPath 582 430 74%
Commons Lang 689 516 75%
Commons Math 1,246 763 61%
Mockito 503 277 55%
Joda Time 264 242 92%

TOTAL 13,009 8,188 63%

3) RQ3: Effect of Refactoring Detection and Reapplication:
As specified in Section IV-B, BugBuilder excludes refactorings
from generated patch by detecting refactorings contained in the
bug-fixing commit and reapplying such refactoring to the asso-
ciated faulty version (Vn−1). To investigate to what extent the
leveraged refactoring detection and reapplication may affect
the precision and recall of BugBuilder, we disabled refactoring
detection and reapplication, and repeated the evaluation (as
specified in Section V-C2).

4) RQ4: Scalability: To investigate the scalability of Bug-
Builder, we depicted the quantitative relation between the run
time of BugBuilder and the size of involved commits.

D. Results and Analysis

1) RQ1: Bug-irrelevant Changes Are Common in Bug-fixing
Commits: For each bug-fixing commit c in Defects4J, we
counted the size of the commit (in lines) and the size of
bug-fixing changes within the commit. Evaluation results are
presented in Table I. From this table, we make the following
observations:
• First, bug-fixing changes account for 63% of the changes

made in bug-fixing commits. In other words, 37% of
the changes in bug-fixing commits are bug-irrelevant, and
thus should not be included in patches for the associated
bugs. Consequently, taking the whole bug-fixing commits
as patches would result in unconcise patches. Such un-
concise patches, if employed by the evaluation of bug-
related approaches (e.g., automatic program repair), could
be misleading.

• Second, the percentage of bug-fixing changes (i.e., the last
column of Table I) varies significantly from project to
project. It varies from 47% (on project Commons CSV) to
96% (on project Jackson Dataformat XML). One possible
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TABLE II
PERFORMANCE OF BUGBUILDER

Project Bug-fixing Commits Generated Patches Matched Patches Precision Recall
Commons CLI 39 17 17 100% 44%
Closure Compiler 174 64 62 97% 36%
Commons Codec 18 10 8 80% 44%
Commons Collections 4 1 1 100% 25%
Commons Compress 47 20 19 95% 40%
Commons CSV 16 10 9 90% 56%
Gson 18 9 8 89% 44%
Jackson Core 26 10 10 100% 38%
Jackson Databind 112 34 33 97% 29%
Jackson Dataformat XML 6 2 2 100% 33%
Jsoup 93 40 36 90% 39%
Commons JXPath 22 6 5 83% 23%
Commons Lang 64 31 29 94% 45%
Commons Math 106 40 39 98% 37%
Mockito 38 19 19 100% 50%
Joda Time 26 11 11 100% 42%

TOTAL 809 324 308 95% 38%

reason for the variation is that different projects often pose
different guidelines on how patches should be committed.
However, regardless of the various guidelines posed by
different applications, it is unlikely to exclude bug-irrelevant
changes completely from all bug-fixing commits.
We also investigated how often bug-fixing commits contain

bug-irrelevant changes, i.e., Pdiff in Section V-C1. Evaluation
results suggest that 379 out of the 809 bug-fixing commits con-
tain bug-irrelevant changes, and thus Pdiff = 47% = 379/809.
It confirms the conclusion that simply taking the whole bug-
fixing commits as patches may frequently (at a chance of
53%=1-47%) result in unconcise patches.

From the preceding analysis, we conclude that bug-fixing
commits often contain significant bug-irrelevant changes. Con-
sequently, excluding such bug-irrelevant changes from bug-
fixing commits is critical for automatic patch extraction.

2) RQ2: BugBuilder Is Accurate and Effective: To answer
RQ2, we applied BugBuilder to each of the bug-fixing code
commits in Defects4J and compared its generated patches
against the manually constructed patches in Defects4J. If
the generated patch is identical to the corresponding patch
provided by Defects4J, we call it a matched patch.

Evaluation results are presented in Table II. The first two
columns present project names and the number of bug-
fixing commits in the projects. The third column presents
the number of automatically generated patches. The fourth
column presents the number of the generated matched patches,
i.e., generated patches that are identical to the manually
constructed patches in Defects4J. The last two columns present
the precision and recall of BugBuilder.

From this table, we make the following observations:
• First, BugBuilder can generate complete and concise patches

on 38% of the bug-fixing commits. We notice that Bug-
Builder generated 324 patches from 809 bug-fixing commits.
We also notice that 308 of the automatically generated

patches are identical to manually constructed ones, which
results in a recall of 38%=308/809.

• Second, BugBuilder is highly accurate. Among the 324
automatically generated patches, 95%=308/324 are identical
to manually constructed ones. We also notice that on 6 out
of the 16 projects, BugBuilder achieves 100% precision, i.e.,
all patches generated from such projects are both complete
and concise.
We notice that 16(=324-308) out of the 324 automati-

cally generated patches are different from their corresponding
patches in Defects4J. We call them mismatched patches. We
manually analyzed such mismatched patches, referring to the
corresponding patches in Defects4J, associated bug reports,
and the associated code commits. We notice that all of the
16 mismatched patches are supersets of their corresponding
patches in Defects4J. Consequently, the reason for the mis-
match should be either (or both) of the following:

1) The patches generated by BugBuilder include some bug-
irrelevant changes, i.e., BugBuilder’s patches are com-
plete but not concise;

2) The manually constructed patches in Defects4J miss
some bug-fixing changes, i.e., Defects4J’s patches are
incomplete.

Notably, the comparison is based on the specification for
concise bug-fixing patches we proposed in Section I. Defects4J
may have followed different specifications, which could be
a potential reason for the difference between the patches in
BugBuilder and Defects4J.

A surprising finding is that the automatically generated
patches are often even better than manually constructed
patches: 12 out of the 16 mismatched patches are manu-
ally confirmed as correct (i.e., both complete and concise)
whereas their corresponding patches in Defects4J miss some
bug-fixing changes (i.e., incomplete). Counting in such 12
complete and concise patches, the precision of BugBuilder
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Fig. 3. Duplicate Changes in Multiple Places Ignored by Human Experts

Fig. 4. Throw Statements Ignored by Human Experts

increases to 99%=(308+12)/324, and its recall increases to
40%=(308+12)/809. Its precision is even higher than the
experts who manually constructed the Defects4J patches:
On the 324 commits where BugBuilder generates patches,
BugBuilder generates only 4 unconcise patches whereas the
experts resulted in 12 incomplete patches.

A major reason for incomplete patches in Defects4J is that
fixing a bug may require duplicate (or highly similar) changes
in multiple places (e.g., multiple documents) whereas human
experts missed some places. A typical example is presented
in Fig. 3. This is a bug-fixing commit from project Apache
Commons Codec [48] whose associated bug report is available
at [49]. As the bug report explains, the return statements return
new String(bytes, Charsets.xxx) in a sequence of newStringxxx
methods (Lines 2, 7, 12, 17, and 22) could not handle null
input, and thus they should be replaced with return new-
String(bytes, Charsets.xxx). However, the patch in Defects4J
[50] contains only the changes in one of the methods (i.e.,
the first method in Fig. 3), and thus it is incomplete. In
contrast, our approach successfully generates the complete
patch containing all of the similar changes in all newStringxxx
methods.

The second reason for the incomplete patches in Defects4J

is that they ignore the required changes in method declarations
and/or variable declarations. A typical example is presented in
Fig. 4. The associated commit comes from Apache Commons
CSV [51] whose associated bug report is available at [52]
and its manually constructed patch is available at [53]. As the
bug report explains, CSVFormat with header does not work
with CSVPrinter. To fix the bug, the developers added the
whole if statement (Lines 8-10) to print the header if it is not
null. Notably, the method declaration of printRecord explicitly
specifies that it has the potential to throw IOException. Conse-
quently, inserting an invocation of this method (Line 9) forces
the enclosing method (and its caller, method print on Line 1) to
explicitly specify the IOException in their method declarations
(Line 6 and Line 2). Otherwise, the revision would result in
compiler errors. However, the patch in Defects4J ignores such
changes in method declarations, and thus it is incomplete. In
contrast, our approach generated the complete patch including
the changes in method declarations.

We also analyzed the four unconcise patches generated by
our approach. Analysis results suggest that all of the 4 un-
concise patches are created because the leveraged refactoring-
mining tool missed some refactorings in the involved code
commits, and thus such uncovered refactorings were taken as
part of the bug-fixing patches. A typical example is presented
in Fig. 5. This example comes from Google Gson [54], and
the associated bug report is publicly available at [55]. The bug
report complains that the method (more specially, the return
statement on Line 7) would result in null pointer exceptions
when typeAdapter is null. To fix the bug, developers inserted
an if statement (Line 8) to validate that typeAdapter is not
null. The patch provided by Defects4J [56] is composed of
two changes only: Line 8 and Line 10. Other changes are
ignored. In contrast, our approach takes all of the changes
on the figure as bug-fixing changes. One possible rationale
for Defects4J to exclude other changes from the patch is that
they could be taken as refactorings: decomposing statement
return typeAdapter.nullSafe(); (Line 7) into two statements
typeAdapter=typeAdapter.nullSafe(); on Line 9 and return
typeAdapter on Line 11. Because variable typeAdapter would
not be used anywhere after the return statement (Line 11),
it could be used as a temporary variable safely. As a result
of the usage, the keyword final (Line 3) should be removed
from the declaration of variable typeAdapter because it is
assigned/changed on Line 9 as a temporary variable. We will
not argue that such changes should not be taken as refac-
torings. However, it is a rather complex and unusual extract
variable refactoring (if it is) because an extract variable
refactoring usually defines a new variable instead of employing
an existing variable temporarily. Such an unusual refactoring
is far beyond the capability of the state-of-the-art refactoring
mining tools. Consequently, BugBuilder failed to recognize
(let alone reapplying) this refactoring and thus took all of the
changes as bug-fixing changes.

The example in Fig. 5 illustrates how unusual refactorings
affect BugBuilder, whereas the following example in Fig. 6
illustrates how BugBuilder is affected by unsupported refac-
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Fig. 5. Imperfect Patch Caused by Undiscovered Refactorings

Fig. 6. Imperfect Patch Caused by Unsupported Refactorings

torings. The bug-fixing commit in Fig. 6 comes from Google
Closure Compiler [39] and the associated bug report is avail-
able at [57]. The bug-fixing changes include the changes on
the while condition (Lines 7-9) and the if statement (Line 10).
Such changes are included in both the automatically generated
patch and the manually constructed Defects4J patch. However,
other changes, i.e., moving the declaration of local variables
(parameter and argument) from the interior of the while
iteration (Lines 12 and 15) to the outside of the while iteration
(Lines 4-5), are not taken by Defects4J as bug-fixing changes
because they should be taken as refactorings: The movement
would not change the functionality of the method but improves
its performance by avoiding the repeating definition of the
same variables. However, this kind of refactorings is not yet
supported by the refactoring mining tool that is leveraged by
BugBuilder. Consequently, BugBuilder failed to remove such
refactorings from its generated patches. Notably, it remains
controversial whether the refactorings should be excluded from
the patch because without such refactorings it is impossible to
use variable parameter in the while condition (as the patch
does). However, in this paper, we conservatively take it as a
false positive of BugBuilder to avoid controversies.

We conclude based on the preceding analysis that
BugBuilder can generate patches on a significant part

(40%=324/809) of bug-fixing commits in real-world applica-
tions, and the generated patches are highly accurate with an
average precision of 99%=(308+12)/324. BugBuilder is even
more accurate than human experts. On 324 bug-fixing commits
on which BugBuilder generates patches, BugBuilder results
in 4 unconcise patches whereas human experts resulted in 12
incomplete patches that miss some bug-fixing changes.

3) RQ3: Refactoring Detection and Reapplication Improves
Recall by 11%: To answer RQ3, we disabled refactoring
detection and reapplication in BugBuilder and repeated the
evaluation on bug-fixing commits collected by Defects4J.
Evaluation results are presented in Fig. 7 where default setting
enables refactoring detection and reapplication. From this
figure, we make the following observations:

• First, enabling or disabling refactoring detection and reap-
plication has significant impact on the recall of BugBuilder.
Enabling it improves the recall of BugBuilder from 36%
to 40%, resulting in a significant increase of 11%=(40%-
36%)/36%.

• Second, enabling or disabling refactoring detection and
reapplication has no significant impact on the precision of
BugBuilder. The precision keeps stable (99%) regardless
of the changes in the setting. A possible reason for the
stable precision is that the last part (Section IV-C and
Section IV-D) of the approach can exclude incomplete/un-
concise patches, which guarantees high precision regardless
of the output of the first part (refactoring-mining) of the
approach.

Enabling the detection and reapplication of refactoring
increases the number of correctly generated patches (and thus
improves the recall) because bug-fixing commits often contain
refactorings. We successfully discover refactorings from 192
out of the involved 809 bug-fixing commits, which we call
refactoring-containing commits. We also notice that 83 out
of the 192 refactoring-containing commits contain no refac-
torings except for the supported refactorings that the current
implementation of our approach can identity and reapply. From
such commits, BugBuilder (with default setting) successfully
generates 27 complete and concise patches. Disabling the
detection and reapplication of refactoring, however, fails to
generate such patches. Notably, if the implementation of
BugBuilder can support additional categories of refactorings in
the future, the recall of BugBuilder could be further improved.

An intuitive baseline approach (noted IBA) is that IBA takes
the whole bug-fixing commit as a patch if the commit does not
contain any refactorings (not limited to the eight categories
of refactorings supported by the current implementation of
BugBuilder). In such a way, IBA would generate 617 patches
from 809 bug-fixing commits in Defects4J. However 217 out
the 617 patches are unconcise, i.e., containing bug-irrelevant
changes. Consequently, its precision 65%=1-217/617 is signif-
icantly lower than that (99%) of BugBuilder.

We conclude based on the preceding analysis that detecting
and reapplying refactorings help improve recall of BugBuilder
whereas its precision keeps stable.
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Fig. 7. Impact of Refactoring Detection and Replication

Fig. 8. Commit Size Influences Average Run Time

4) RQ4: Scalability: Fig. 8 presents a scatter diagram with
a trendline, depicting the relationship between the size of
bug-fixing commits and the run time of BugBuilder on such
commits. Notably, BugBuilder terminates when its run time
reaches 40 minutes on a single commit. From Fig. 8, we
observe that the run time increases significantly with the
increase in commit size. We also notice that BugBuilder can
efficiently handle bug-fixing commits that contain up to thirty
lines of changes. By increasing the maximal time slot (40
minutes at present) for each commit, BugBuilder can even
handle larger commits in the future. Currently around 34% of
the commits ran out of the maximal time slot.

Detecting and reapplying refactorings improves the effi-
ciency of BugBuilder. BugBuilder has reapplied refactorings
on 83 commits, and its average run time on such commits
was 21 minutes. We disabled the detection and reapplication
of refactorings, and reapplied BugBuilder to such commits.
Our evaluation results suggest that disabling the detection and
reapplication of refactorings increased the average run time on
such commits significantly by 24%=(26-21)/21.

We conclude based on the preceding analysis that Bug-
Builder is scalable, and most of the commits could be handled
within 40 minutes.

E. Threats To Validity

The primary threat to external validity is the limited number
of involved bug-fixing commits. In the evaluation, we evalu-
ated BugBuilder on 809 bug-fixing commits collected by De-
fects4J. Special characteristics of such commits may bias the
conclusions of the evaluation. We selected such commits for
evaluation because Defects4J provides manually constructed
concise patches that exclude bug-irrelevant changes. As a

result, we can leverage such patches as the ground truth to
evaluate the quality of automatically generated patches. To the
best of our knowledge, Defects4J is the only bug repository
that provides manually constructed concise patches for real
bugs in open-source applications, and thus the evaluation was
confined to the bug-fixing commits in Defects4J. However,
to reduce the threat, we should evaluate BugBuilder on more
bug-fixing commits in the future.

A threat to construct validity is that the manual checking
of the generated patches (and patches in Defects4J) could
be inaccurate. During the evaluation, we manually checked
the generated patches and their corresponding patches in
Defects4J when they did not match each other. Such manual
checking could be biased and inaccurate. To reduce the threat,
we presented typical examples in Section V-D2, and made all
of the generated patches publicly available at [30].

Another threat to construct validity is that the evaluation is
based on the assumption that matched patches are complete
and concise. If an automatically generated patch is identical
to the manually constructed patch (in Defects4J) for the
same commit, we simply assumed that they are complete and
concise. However, as discussed in Section V-D2, human ex-
perts may also make incorrect (especially incomplete) patches
occasionally, and thus the assumption may not always hold.

VI. DISCUSSION

A. It is Critical to Detect and Reapply Refactorings

A bug-fixing commit may contain three categories of
changes: Bug-fixing changes, refactorings, and functionality-
related changes (e.g., implementation of new features). Bug-
Builder can generate patches for pure bug-fixing commits
(without any bug-irrelevant changes) with the potential patch
generation (Section IV-C) and validation (Section IV-D). If
a bug-fixing commit contains both bug-fixing changes and
refactorings, BugBuilder leverages the Refactoring Detection
and Reapplication (RDR for short) to turn the commit into
a pure bug-fixing commit, and then generates patches from
it. Notably, 24%=192/809 of the bug-fixing commits in De-
fects4J contain refactorings, which quantitatively suggests the
importance of RDR (Section IV-B). RDR has the potential
to rescue such commits. However, the current implementation
of BugBuilder supports only eight categories of refactorings,
which prevents RDR from reaching its maximal potential: It
improved recall by 11% only in the evaluation.

Another significant benefit of RDR is the significant im-
provement on the BugBuilder’s efficiency. Excluding refac-
torings significantly reduces the size of commits, and thus
reduces the number of potential patches. Evaluation results
in Section V-D4 suggest that disabling RDR increased Bug-
Builder’s run time by 24% on refactoring-contained commits.

B. Extremely High Precision VS Fairish Recall

High precision (99%) of BugBuilder is critical for the
success of its future application. We expect it to build high-
quality bug repositories without any human intervention, and
thus the generated patches should be comparable to manually
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constructed ones. Otherwise, the resulting bug repositories
could be misleading and may bias research and evaluation
depending on them. Evaluation results in Section V confirm
that the automatically generated patches are comparable to
(and sometimes better than) patches manually constructed by
human experts. In contrast, a fairish recall (40%) is acceptable
because it could be remedied by applying BugBuilder to
massive bug-fixing commits outside Defects4J.

C. Limitations

BugBuilder succeeds on a substantial part (40%) of the bug-
fixing commits, but fails on around 60% of the commits as
well. BugBuilder works on a bug-fixing commit only if 1)
the commit is composed of bug-fixing changes only or 2) the
commit is composed of only bug-fixing changes and refactor-
ings. Notably, if the refactorings within the commit are only
applicable after the bug-fixing changes, existing refactoring
mining tools like RefactoringMiner [37] cannot identify such
refactorings by comparing the bug-fixed version (vn) and the
original buggy version (vn−1). For example, if developers
insert a fragment of source code to fix a bug, and then
apply extract method refactoring to extract the inserted source
code as a new method, RefactoringMiner cannot identify the
extract method refactoring because the extracted source code
is not available in the original buggy version. As a result,
BugBuilder would fail to split the commit accurately into
a refactoring patch and a following bug-fixing patch. If the
refactorings are required by the bug fix (and thus applied
before the fix) or independent of the fix (and thus could be
applied before the fix), BugBuilder has the potential to split the
bug-fixing commit into a refactoring patch and its following
bug-fixing patch. If the commit contains bug-irrelevant and
non-refactoring changes (e.g., implementing new features),
BugBuilder cannot work either. Take the bug-fixing commit in
Fig. 4 as an example. Adding the functionality to print headers
of CSVFormat is taken as a bug-fixing action there. However, it
could be taken as an implementation of a new feature (printing
herders of CSVFormat) as well if this functionality has not
been specified in the original requirements. Consequently, it is
challenging (even for human experts) to distinguish bug-fixing
changes from other functionality-related changes without the
help of requirements and bug reports. However, automatic
and accurate comprehension of requirements and bug reports
in plain texts remains challenging, let alone requirements
are often unavailable. Most of the bug-fixing commits where
BugBuilder fails contain functionality-related bug-irrelevant
changes, and this is the major reason for the low recall of
BugBuilder.

Although BugBuilder misses 60% of the bugs/patches, it
enables automatic construction of large bug-patch repositories
for the following reasons. First, BugBuilder is fully automated
with extremely high precision. Second, BugBuilder is not
biased by the types of bugs, but affected by only whether
the fixes are mixed with other functionality-related changes.
Finally, although Defects4J extracts bug-patches from only
17 projects, there are numerous open-source projects to be

exploited. Applying BugBuilder to such projects automatically
could significantly increase the capacity of bug-patch reposi-
tories, thus offsetting BugBuilder’s weakness (low recall).

D. Further Improvement on Recall
In theory, BugBuilder should be able to generate com-

plete and concise patches for all pure bug-fixing commits
(without any bug-irrelevant changes). However, BugBuilder
succeeded on only 281 out of the 400 pure bug-fixing commits
(called pure commits for short) in Defects4J. The major
reason for the failure is the setting of the maximal time
slots: 71%=84/119 of the failed pure commits ran out of the
maximal time slots. Increasing the time slots may improve
the recall in the future. Another reason for the failure is the
redundancy of some patches. For example, rejecting some
changes (i.e., changes on Lines 11-12) of the Defects4J patch
(publicly available at https://github.com/rjust/defects4j/blob/
master/framework/projects/Lang/patches/52.src.patch, but not
presented in the paper for space limitation) would not change
the semantics of the program. Consequently, BugBuilder gen-
erated multiple candidate patches from it, and thus BugBuilder
did not known which one should be recommended.

Improving the implementation of the proposed approach
to support additional categories of refactorings may also
significantly improve recall in future. Notably, 57%=109/192
of the refactoring-containing commits in Defects4J contain
some refactorings unsupported by the current implementation.
Consequently, supporting all such refactoring in future has the
potential to double the effect of RDR that currently improves
recall by 11%.

VII. CONCLUSIONS AND FUTURE WORK

Large-scale and high-quality repositories of real bugs are
critical for bug-related research. However, existing approaches
to building such repositories either fail to exclude bug-
irrelevant changes from patches or require human intervention.
To this end, in this paper, we propose a novel approach,
called BugBuilder, to extracting complete and concise patches
from bug-fixing commits automatically. BugBuilder has been
evaluated on 809 bug-fixing commits in Defects4J. Evaluation
results suggest that it successfully generates complete and
concise patches for forty percent of the bug-fixing commits,
and its precision was even higher than human experts.

With the help of BugBuilder, we plan to build large-scale
and high-quality repositories of real bugs automatically in the
future. It is also practical and meaningful to build repositories
of bugs in specific domains or planform, e.g., real bugs in
mobile applications and real bugs in machine learning applica-
tions. Automatic approaches (e.g., BugBuilder) to generating
complete and concise patches from bug-fixing commits may
make such challenging tasks practical.
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R. Ferenc, and A. Mesbah, “BugsJS: A benchmark of JavaScript bugs,”
in 12th IEEE Conference on Software Testing, Validation and Verification
(ICST). IEEE, 2019, pp. 90–101.

[34] F. Madeiral, S. Urli, M. Maia, and M. Monperrus, “BEARS: An
extensible java bug benchmark for automatic program repair studies,”
in 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2019, pp. 468–478.

[35] D. A. Tomassi, N. Dmeiri, Y. Wang, A. Bhowmick, Y.-C. Liu, P. T.
Devanbu, B. Vasilescu, and C. Rubio-González, “BugsWarm: mining
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